
IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 8, August 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4804 16

Secure Data Transmission for IOT Applications

Radhika Munoli
1
, Prof. Sankar Dasiga

2

M.Tech Scholar, Department of ECE, NMIT, Bangalore, India
1

Professor, Department of ECE, NMIT, Bangalore, India
2

Abstract: Providing security for the IOT environment is the major assessment carried out where the entire world is

dependent on e-communication and assures the guarantee of communication without any error causing .In this project

work, Raspberry Pi, an open source and a popular choice as the hardware platform for IoT - both devices as well as

gateways, has been used. It is nowadays a trend and also a more appropriate path to choose open source software for

implementation for the prototyping and study purposes in academia. As such Open SSL has been employed for

configuring secure access of data at the device level as well as the library for the secure communication using the

MQTT and CoAP protocols. Further, the project work also involves a study of different web access vulnerabilities and

suggested remedies. Even when the latest version 2 of Raspberry Pi was employed the performance of the application

with Open SSL vs. a standard desktop computer system is not comparable. Further optimization of the application or

use of a 128-bit key based encryption could be the possible approaches for security implementations for embedded

applications. The primary objective of this project aims at implementing security procedures for IoT based devices such

as nodes (for ex raspberry pi) and gateways (for ex PC) using MQTT and CoAP protocol in an embedded platform.

Project approaches at different layers of the ISO/OSI model for the security of end to end nodes and gateways through

cloud.

Keywords: Raspberry Pi, IOT, Open SSL, Secure, End to End Communication, MQTT, CoAP, Vulnerability.

I. INTRODUCTION

Internet of Things (IoT) has become an area of immense

interest for the academia as well as the industry in the

recent times. Anticipation is that by Y2020 there would

be 50 billion Portable / Wearable, Consumer and Industrial

etc. devices on the net. This presents significant

opportunity as well as challenge to the researchers and

engineers. While the amount of hardware and software

that would be needed to interface & connect the things and

collect & process the data from them offers many

opportunities for innovation and development, the security

requirements of innumerable devices and the Big Data

poses multiple challenges that necessitate employment of

robust measures and implementations. You do not want

the doors of your car to be unlocked via the net by

somebody when it is in the parking lot while you are busy

shopping in the mall!! This project aims to look at some of

the security considerations and the approach for

implementation in the context of IoT.

While providing data security through MQTT and CoAP

protocol, widely used with general purpose computer

systems. Its use with embedded systems is not prevalent.

IOT Application Security is a combination of Network

Security, Data or information Security and

Software/firmware Protection. Here, providing Network

security and Data security are the point of my concern.

Network security is the use of software, hardware, and

procedural methods to protect IOT applications from

attackers and Data security is the use of codes, algorithms

and encryption techniques for the protection of IOT

applications.

II. PROTOCOLS

Protocols used in this project for securing the data

transmitted in either of the communication ways are:

 Node to gateway

 Gateway to node

 Node to node

 End to end

A. MQTT

MQTT (Message Queue Telemetry Transport)is an

application protocol viewed as a publish subscribe model,

designed for the communication of M2M .This protocol

sits on top of TCP/IP layer . both client and broker need to

have a TCP/IP protocol stack

Fig 1: Publisher Subscriber model

The architecture of MQTT publisher subscriber model

showed above features one central server (broker) that

manages the subscriptions (sink) and publications (source)

from each of its various clients. Clients can publish the

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 8, August 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4804 17

data without knowing the subscriber in this model. MQTT

is also designed to reduce the overhead for each packet

coming through it in order to preserve bandwidth and

performance for resources which are constrained in

embedded devices. It’s simple framework for the managed

mesh networks of TCP oriented devices.

SSL/TLS - To implement security for the data

transmission between the nodes (pi) and gateways (pc) in

an IOT context. SSL/TLS (Secure Socket Layer/Transport

Layer Security) is to be used for MQTT protocol. Since,

MQTT relies only on TCP (connection oriented) as

transport protocol, by default this connection does not use

an encrypted communication. To encrypt the entire MQTT

communication, it allows using TLS instead of plain TCP.

This is carried out by TCP handshake.

B. CoAP

DTLS is used to protect the CoAP protocols. As CoAP

(Constrained Application Protocol) is a web protocol

which relies over UDP (User Datagram Protocol; which is

connectionless) protocol used mainly for the constrained

M2M devices in the IOT, TLS is not used here; instead

encryption is done using DTLS (Datagram Transport

Layer Security). Most of the constrained device (CoAP)

implementations are carried by lib coap packages; this can

also be used on the server side.

Fig 2: end to end secure communication with the CoAPs

The figure gives the detailed description about the end to

end security in an CoAPs environment of IOT. It is

divided into 2 parts are seen at the right hand side is the

light weight protocol access network which are connected

wirelessly and at the left conventional internet is been

connected wired and thus CoAP provides security between

both the ends making the use of secure CoAP or CoAPs.

DTLS – DTLS (Datagram TLS) is the only protocol

providing channel security. Since it performs

authentication, authorization key exchange, and provides

protection against application data. Using this DTLS as the

security suite for IoT applications; the security protection

can be done using DTLS handshake

III. DESIGN APPROACH

The security implement for MQTT protocol is done using

open ssl library function of SSL/TLS encryption method

and security implementation for CoAP protocol is done

using asyncio function of DTLS encryption method at the

node transmission of data coming through the gateway

(cloud) as shown in the following figures:

A. Open SSL

Creating the structure of node to node communication

such as raspberry pi’s and PC’s acting as gateways for the

two nodes. In this scenario data to be transmitted from the

gateway are secured at the node point using SSL/TLS

cryptographic methods which includes handshake

mechanisms to establish the connections i.e., raspberry pi

to PC over open ssl.

Fig 3: connection between node to node and gateway

through open ssl

B. DTLS

In the below scenario the data transmission is been carried

through the gateway securing it with datagram encryption

method of CoAP and passing to the node point using the

client and server DTLS encryption mechanism, data

coming from the cloud sent by client are secured at the

servers.

Fig 4: connection between node to node and gateway

through DTLS

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 8, August 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4804 18

C. End to end communication

Proposed Secure End to end connection communication

system between nodes and gateway is shown in the figure:

At right of the figure shown below the security of the

data is maintained between the gateway and the node

i.e.,the data coming from the cloud (gateway) is been

secured to read it at the node point terminal

Fig 5: secure data transmission for end to end

communication

Since the data /information to be transmitted is secured at

the node through raspberry pi using the protocol MQTT

with TLS encryption algorithm of openssl library and can

also be done with the CoAP protocol using DTLS. This is

possible by establishing the SSL/TLS handshake

connection between the different websites. Here I have

demonstrated with hp and google websites.

Now coming to the cloud i.e., gateway is secured at the

MQTT over mbed TLS from the various vulnerabilities by

patching it, by another node (ex: PC or laptop) using

HTML.

IV. VULNERABILITY

A. Network Level Vulnerability

Some network level vulnerabilities are listed below:

Network level vulnerabilities Description

SSL/TLS not enforced The traffic sent is SSL/TLS

encrypted over a network

but can be accessed over

unencrypted HTTP

connection.

SSL/TLS Insecure

Renegotiation

Want to access the new TLS

handshake during an

ongoing SSL/TLS

handshake and its known as

session renegotiation.

Weak SSL ciphers If weak SSL cipher suites

are configured it can

decrypt and modify the

traffic.

Open ssl implementation to

Heart bleed

It attacks directly at the

server’s memory when the

remote server is running.

SSL configuration vulnerable

to POODLE

Padding oracle on

downgraded legacy

encryption is an attack

which exploits a

combination of downgraded

cipher suites.

SSL/TLS BEAST Allows the attacker to inject

the JavaScript code into the

browser to decrypt the

HTTPS traffic.

SSL/TLS crime information Compression ratio info leak

made easy is an attack if

plain text data is encrypted

before compression.

Table 1: list of network level vulnerability

B. Application Level Vulnerability

OWASP top 10 vulnerabilities are listed below:

Table 2: list of application level vulnerability

C. Tool used to detect Network level Vulnerability

Nmap ("Network Mapper") is a free tool available to

download and it’s also an open source (license) for

network discovery and security checking. It also gives the

host address using in that ip address mapping its time

browsed using the session cookie and session timeout

method. Nmap basically introduces vulnerability detection

mostly network level vulnerability and service detection

features are available in it.

 Nmap make utilization of crude IP bundles to figure

out what hosts are accessible on the system, what

benefits those hosts are putting forth,

 What working frameworks (and OS forms) they are

running, what kind of parcel channels/firewalls are

being used, and many different attributes. The

screenshots of this are shown in the results.

D. Tool used to detect application level vulnerability

Burp suit is the actual tool used to detect the application

level vulnerability to verify this i have created a HTML

page highlighting our college annual function as an

Injection

Broken Authentication and Session Management

Cross Site Scripting

Insecure Direct Object References

Security Misconfiguration

Sensitive Data Exposer

Missing Function Level Access Control

Cross Site Request Forgery

Using Components with Known Vulnerabilities

Invalidated Redirects and Forwards

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 8, August 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4804 19

example for showing the page which is vulnerable and the

pages are vulnerable to 2 different commands of XSS

(third vulnerability in top 10 OWASP) and they are:

 Bad attribute XSS command

 Bad script XSS command

The screenshots of it are shown in the results.

V. RESULTS

The results are shown in the form of screenshots for the

following parameters:

A. Open SSL

The screenshot shown below gives the execution outputs

of the c code for performing open ssl security at the hp

website and also for the google website. Allowing the

SSL/TLS handshake for the connection establishment at

the gateway and the node ensures the end to end security.

The data to be transmitted now between the node to node

or node to gateway or vice version is possible securely

Screenshot 1: Output of connection establishment between

client and server

B. MQTT and SSL

The following screenshots are the outputs of the MQTT

publisher, subscriber and broker model. Where, the output

of the console of the broker is shown first. Further, in the

console window of the broker, screenshot of the messages

received from the MQTT QoS is shown next.

A screenshot of the publisher messages received on

console window of the subscriber is shown at the end.

The following screenshots shows the output of:

 Console of the broker

 Message received from MQTT QoS

 Subscriber

Screenshot 2:output of console of the broker

Screenshot 3: output of message received from MQTT

QoS

Screenshot 4: output of subscriber

C. Performance of SSL

Comparison of desktop and pi - Observation is that there is

a factor of 33 differences in terms of performance between

the computer system and the embedded platform. Part of

the significantly high performance on the Intel processor

based desktop system could be attributed due to the

availability of hardware acceleration as well as floating

point and math co-processors.

On the Desktop Computer System:

Screenshot 5: On the Desktop Computer System

On the raspberry pi platform:

Screenshot 6: On the raspberry pi platform

D. NMAP

In network level vulnerabilities, using NMAP the

following vulnerabilities are detected:

 SSL is not enforced of login

 Poodle

 Beast

Screenshot 7: SSL not enforced at login

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 8, August 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4804 20

Screenshot 8: vulnerable to poodle

Screenshot 9: vulnerable to beast

E. HTML

The following screenshots shown below are:

HTML page highlighting our college annual function as an

example for showing the page which is vulnerable and the

pages are vulnerable to 2 different commands of XSS

(third vulnerability in top 10 OWASP) and they are:

 Bad attribute XSS command

 Bad script XSS command

Screenshot 10: vulnerable site shown with XSS bad

attribute

Screenshot 11: vulnerable site shown with XSS bad script

VI. CONCLUSION

Security in the realm of IoT has to be at all levels – Device

Access, M2M, Gateway to the Cloud, and Access of Data

on the Cloud etc. Data access from the device via the local

ports such as USB has to be secured through measures

such as encryption, firewalls etc., security of the data on

the net can be addresses at Network or the M2M Level

through mechanisms like proprietary protocols, encryption

etc. whereas at the Transport Level through securing

protocols such as MQTT, CoAP or the Web Sockets – all

of which are overheads for the limited-capable IoT devices

and LANs. Security with regards access of data on the

cloud in a way is a problem that falls in the space of

highly-capable computer systems and internet resources.

In this project I have established the connection through

handshake between the client and the server assuming

nodes and the gateway as client and server , hence data

arriving at the destination from the source either it may be

gateway to node or node to gateway , in either cases it

provides security between end to end scenario on

embedded platform . This transmission of data security is

completed with different protocols like MQTT and CoAP

using its corresponding library functions libssl and libcoap

respectively. Different vulnerabilities are mentioned in the

project like network layer and application layer

vulnerable. Performance of SSL is carried out by

Comparing the desktop computer system and raspberry pi

platform observing the factor of 33 differences in terms of

performance between the computer system and the

embedded platform. To conclude, I have created a

webpage of my college (as an example) with 1 application

vulnerable HTML site and preventing its consequences for

the same. On remediating these vulnerabilities one can

prevent and protect from attackers to attack.

REFERENCES

[1] “Secure Communication for Smart IoT Objects: Protocol Stacks,

Use Cases and Practical Examples”by-Riccardo Bonetto, Nicola

Bui, VishwasLakkundi, Alexis Olivereau, AlexandruSerbanati,

Michele Rossi
[2] “Standards based end-to-end IP security for the internet of things”

by-rennehummen, klauswehrle

[3] “A Study of Information Security for M2M of IOT” By-DU Jiang
and CHAO ShiWei.”

[4] “Foundations of security”by-Neil Daswani, Christoph kern, Anita

kesavan

[5] “Cryptography and Network Security” by-William Stallings

[6] “Secure CoAP Using Enhanced DTLS forInternet of Things” By-
AjitA.Chavan, Mininath K. Nighot

[7] http://www.computer.org/csdl/proceedings/wowmom/2012/1238/00

/WSIoTSoSSecureCommunicationforSmartIoTObjectsProto.pdf
[8] http://www.computer.org/csdl/proceedings/cisim/2008/3184/00/318

4a157.pdf

[9] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1589113
&queryText=security%20to%20wireless%20data%20transmission

%20under%20IOT%20env&pageNumber=4&http://ieeexplore.ieee

.org/xpl/articleDetails.jsp?arnumber=7270408&queryText=security
%20to%20wireless%20data%20transmission%20under%20IOT%2

0env&pageNumber=10&newsearch=true&searchField=Search_All

newsearch=true&searchField=Search_All
[10] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnum

ber=7103240

[11] http://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl
[12] http://www.raspberrypi.org

[13] http://www.elinux.org

[14] http://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl
[15] http://www.cisco.com/c/en/us/about/security-center/secure-iot-

proposed-framework.html

